22 research outputs found

    Perspectives on multiscale modelling and experiments to accelerate materials development for fusion

    Get PDF
    Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest efforts to link modelling to experiments through advanced observation and characterisation techniques.MRG, SLD, and DRM acknowledge funding by the RCUK Energy Programme [grant number EP/T012250/1]. Part of this work has been carried out within the framework of the EUROFusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. JRT acknowledges funding from the US Department of Energy (DOE) through grant DE-SC0017899. ZB, LY,BDW, and SJZ acknowledge funding through the US DOE Fusion Energy Sciences grant DE-SC0006661ZB, LY and BDW also were partially supported from the US DOE Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions. JMa acknowledges support from the US-DOEs Office of Fusion Energy Sciences (US-DOE), project DE-SC0019157. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy (DOE) under contract DE-AC05-76RL01830. YO and YZ were supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract number DE-AC05-00OR22725. TS and TT are supported by JSPS KAKENHI Grant Number 19K05338

    First-principles calculations of interaction between solutes and dislocations in tungsten

    Get PDF
    Changes in mechanical properties due to transmutation products (Re and Os) in W alloys is a central issue for plasma-facing materials in fusion reactors. We conducted density functional theory calculations to investigate the effect of Re, Os, and other 5d solutes on core structure and motion of screw dislocations associated with plastic deformation. Ir, Pt, Au, and Hg solutes show strong attractive interactions with screw dislocations, causing solution strengthening by the pinning mechanism. On the other hand, Hf, Ta, and Re cause softening by facilitating dislocation motion around solutes. This prediction corresponds well with the experimental observation of softening behavior in W-Re alloys

    Radiation-enhanced diffusion of copper in iron studied by three-dimensional atom probe

    No full text
    Radiation-enhanced diffusion (RED) of copper (Cu) in iron (Fe) is essential for understanding solute/impurity diffusion in nuclear materials, especially reactor pressure vessel steel, but has been rarely reported experimentally. In this study, we performed a high-precision investigation of RED using well-controlled electron irradiation and three-dimensional atom probe (3D-AP). Cu-Fe diffusion pairs were created using high-purity Fe and Cu as base materials, and irradiated by 2 MeV electron at a temperature of 773 – 893 K controlled to within ±3 K. Cu diffusion into the Fe matrix was observed at the atomic level using 3D-AP, and the diffusion coefficient was obtained directly using Fick\u27s law. RED was clearly observed, and the ratio of diffusion under irradiation to thermal diffusion was increased as the irradiation temperature decreased. RED was quantitatively evaluated using the reaction kinetics model, and the model which consider only vacancies gave a good agreement. This gave experimental clarification that RED was dominated by irradiation-induced vacancies. In addition, the direct experimental results on the effect of irradiation on the solubility limits of Cu in Fe was obtained; solubility limits under irradiation were found to be lower than those under thermal aging
    corecore